2013 IEEE 37th Annual Computer Software and Applications Conference

SQAF-DS: A Software Quality Assessment
Framework for Dependable Systems

Junbeom Yoo , Sanghyun Yoon
Department of Computer Science and Engineering
Konkuk University
Seoul, 143-701, Republic of Korea
{jbyoo, pctkdgus} @konkuk.ac.kr

Abstract—This paper proposes a software quality assessment
framework for dependable systems (SQAF-DS), providing a
systematic way to assess software quality through test cases,
indirectly. SQAF-DS intends to reduce the time and cost for
dependability assessment thorough using test cases as a means
of the assessment. Test cases are developed in the process of
software development and used to test target system, while
dependability requirements are derived from dependability
analysis, such as FTA (Fault Tree Analysis). SQAF-DS formally
checks inclusion relation between dependability requirements
and test cases. If the formal checking succeeds, then we can
assure that the dependability requirements are well implemented
in the software system.

Keywords-software quality; dependability; quality assessment;
dependable system; test cases; formal checking

I. INTRODUCTION

Dependability is an important prerequisite for dependable
systems [1], and should be demonstrated sufficiently to get
operating permissions by regulation authorities. It reflects the
extent of the user’s confidence that it will operate as they
expect and that it will not fail in normal use [2]. While many
researchers have defined the dependability in slightly different
ways [2]-[4], we adopt the one of Sommerville, a tuple of
four principal dimensions such as safety, security, reliability
and availability. Each dimension includes analysis techniques
for achieving itself and assessment methods/measures.

Dependability assessment is an important activity as well
as dependability achievement (i.e., analysis) itself, since the
former plays a role in deciding when to stop the effort for
the latter. Analysis techniques take much time and cost, and a
prompt decision whether to keep them up while preserving a
required level of dependability is one of the key factors to cost-
effective software development. This paper proposes a way to
reduce the effort for dependability assessment; Software Qual-
ity Assessment Framework for Dependable Systems (SQAF-
DS). SQAF-DS intends to reduce the time and cost thorough
using test cases as a means of the assessment. Test cases
are developed in the process of software development and
used to test target system, while dependability requirements
are derived from dependability analysis, such as FTA. SQAF-
DS checks formally inclusion relation between dependability
requirements and test cases. If the formal checking succeeds,
then we can assure that the dependability requirements are

0730-3157/13 $26.00 © 2013 IEEE
DOI 10.1109/COMPSAC.2013.118

724

well implemented in the software system, indirectly. SQAF-DS
also provides a systemic way for transforming dependability
requirements and test cases into inputs to formal checking
techniques such as the VIS equivalence checking [5] and the
SMYV symbolic model checking [6].

SQAF-DS needs no additional cost for developing test
cases, since they are developed in the process of software
development. On the other hand, SQAF-DS should provide
a systematic technique for eliciting requirements from the
results of dependability analysis and then transforming them
into specific forms of properties for formal checking purposes.
Test cases also should be transformed into specific input forms
to formal checking methods. The transformation and formal
checking techniques adopted would vary depending on the
forms of dependability requirements elicited and test cases.
The following section introduces the details on SQAF-DS.

II. SQAF-DS

(Fig.1) overviews the proposed software quality assessment
framework for dependable systems - SQAF-DS. It intends
to reduce the cost of software quality assessment thorough
using test cases as a means of the assessment. It uses formal
checking techniques to ascertain inclusion relation between
dependability requirements and test cases. Dependability re-
quirements and test cases are transformed into specific inputs
to formal checking methods. If the formal checking produces
TRUE, then we can conclude that the dependability properties
are well implemented into the software system and we do not
need any other dependability analysis to assess the properties
any more. On the other hand, in case of FALSE, we cannot
check the properties through the test cases and have to use
other assessing methods, the same as before.

A. Formal Checking

The formal checking depicted in the middle of (Fig.l)
plays an important role in SQAF-DS. It checks inclusion or
equivalence relationship between dependability properties and
test cases. If the checking produces TRUE, we can confirm that
the dependability requirements are includes in (or equivalent
with) the test cases. If the test cases are all passed successfully,
whether unit tests or system tests, we can assure that “The
dependability requirements are well implemented in the target
software system”. If the checking results in FALSE, we cannot

IEEE
computer
® psouety

be sure “The dependability requirements are NOT implemented
yet.”, since they may be implemented in other ways which
cannot be assured by the test cases.

A Software Quality Assessment Framework
for Dependable System (SQAF-DS)

Software Dependability Analysi Software Develop 1t Process

Dependability Requirements | Test Cases

Transformation Transformation

Dependability Properties Models of Test Cases

Formal Checking
i
Dependability Properties C Test Cases

TRUE FALSE

We DO NOT KNOW
whether
dependability properties are
implemented or not.

Test Execution

TRUE FALSE

We need OTHER
dependability assessment
the same as
before.

Dependability properties | | D

ity properti
are WELL implemented. are NOT implemented.

Fig. 1. A software quality assessment framework for dependable systems
(SQAF-DS)

Model checking [7], equivalence checking [8] and set in-
clusion [9] are candidates for the formal checking methods.
In case of model checking, we typically need two inputs;
temporal logic properties [10] and a model of finite states
machines, which depend on the model checker we decide to
use.

B. Dependability Requirements

Dependability requirements are derived from the results
of dependability analysis. For example, in safety dimension,
dependability requirements can be elicited from ‘minimal cut-
sets’ [11] of FTA (Fault Tree Analysis). In case of security,
‘security patterns’ would be useful as candidates for de-
pendability requirements. Transformation from dependability
requirements into specific forms of properties or programs
depends on the formal checking methods which we use. If
we use the VIS verification system for behavioral equivalence
checking, we need to transform the dependability requirements
into a Verilog program. In case of symbolic model checking
such as the SMV model checker, they should be transformed
into CTL properties. If we use SAT/SMT solvers such as

725

Yices and MiniSAT, we have to transform the dependability
requirements into specific forms of propositional logics.

C. Test Cases

The other input to formal checking methods is test cases.
Test cases are developed in the process of software develop-
ment and derived from requirement/design specifications (for
functional test) or source code (for structural test) by devel-
opment teams. SQAF-DS transforms test cases into specific
input programs of formal checking methods as dependability
requirements, too. If formal or semi-formal specifications are
used, then the transformation would be mechanized.

III. CONCLUSION AND FUTURE WORK

This paper proposes a software quality assessment frame-
work for dependable systems - SOQAF-DS. It intends to reduce
the cost for assessing the software quality (i.e., dependability)
through using test cases as a means of the assessment. We
are now planning to perform a full-scale safety assessment on
system-level dependability requirements and test cases of a
control software of nuclear reactor protection system in Korea
as well as the preliminary examples of [12].

ACKNOWLEDGMENT

This research was supported by the MKE, Korea, under
the Development of Performance Improvement Technology for
Engineering Tool of Safety PLC program supervised by the
KETEP” (KETEP-2010-T1001-01038) and a grant from the
Korea Ministry of Strategy, under the development of the in-
tegrated framework of I1&C conformity assessment, sustainable
monitoring, and emergency response for nuclear facilities.

REFERENCES

[1] D. Jackson, M. Thomas, and L. I. Millett, Software for Dependable
Systems: Sufficient Evidence?, N. R. C. Committee on Certifiably
Dependable Software Systems, Ed. The National Academy Press, 2007.
I. Sommerville, SOFTWARE ENGINEERING (8th). Pearson College
Div, 2006.

J. C. Knight, “Safety critical systems: Challenges and directions,” in
International Conference of Computer Safety, Reliability and Security,
2002, keynote.

R. S. Pressman, SOFTWARE ENGINEERING (6th).
2005.

R. K. Brayton and et. al., “VIS : A system for verification and synthesis,”
in the Eighth International Conference on Computer Aided Verification,
CAV 96, 1996, pp. 428-432.

K. L. McMillan, Symbolic Model Checking.
lishers, 1993.

E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Programming Languages and Systems, vol. 8, no. 2, pp.
244-263, 1986.

S.-Y. Huang and K.-T. Cheng, Fromal Equivalence Checking and
Debugging. Kliwer Academic Publishers, 1998, ch. 4.

C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, Foundation
of Artificial Intelligence, ser. Handbook of Knowledge Representation.
Elsevier, 2008, vol. 3, ch. 2, pp. 89-134.

M. Huth and M. Ryan, Logic in Computer Science, 2nd ed. Cambridge,
2004.

W. Vesely, F. Goldberg, N. Roberts, and D. Haasl, “Fault tree handbook,
technical report NUREG-0492,” U.S. Nuclear Regulatory Commission,
1981.

S. Yoon, “Safety assessment of dependable software system using test
cases,” Master’s thesis, Konkuk University, 2012.

(2]
(3]

[4] Mc Graw Hill,

(5]

Kluwer Academic Pub-

(6]
(71

(8]

[9]

[10]

[11]

[12]

